Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Paula F Avila

National Laboratory of Energy and Geology, Portugal

Title: Assessement of metalloids phytoavailability in mining soils

Biography

Biography: Paula F Avila

Abstract

Trace metals in soil might have origin from anthropogenic sources as metal mining and processing. Soil acts as a metalloid reservoir considered dangerous due to their potential toxicity and persistence in the environment. Metalloids accumulation in soil can degrade its quality. Phytotechnologies use metal tolerant plants and microorganisms to extract, degrade, contain or immobilize metalloids in soil, promoting their restoration. Borralha mine (Portugal) explored tungsten; soil is contaminated with high metalloid concentrations and can benefit from phytotechnologies in its remediation and requalification. Energy crops such as sunflower (Helianthus annuus) and Populus sp., with high potential success to adapt to contaminated soil, assisted by microorganisms (mycorrhizal fungi and plant growth promoting bacteria) that stimulate crop growth, can benefit soil quality and functionality reducing the stress promoted by the contamination. Assessing the environmentally available concentrations and metalloids distribution in soil fractions was the first step in this study. Soil physico-chemical parameters: 52% sand, 42.4% silt, 2.1% clay; pH 5.0; 10.5% OM; 4.2% CO32-, 0.11% N and 113 µS/cm EC. According to the proposed guidelines for Portuguese soil (in mg kg-1 Cu=35; Cd=0.6; As=22; Pb=34 and Zn=85) Cu exceed 24 times de guideline value and Cd 15 times. Sequential chemical extraction: most pollutant fraction consists of metals bounded to sulfides and released under oxidizing conditions in AMD production, nevertheless, Cu and Cd were extracted with acetic acid suggesting linkage to the easily mobilized phases. Selective single extraction to assess bioavailability of metalloids according to the maximum permitted levels for water soluble forms of Cd=0.03 and Cu=0.7 mg kg−1 extracted soluble concentrations of Cd and Cu (H20Cd 3.7X, NH4NO3Cd 8.3X, EDTACd 40X and H20Cu 1.3X, NH4NO3Cu 15.7X, EDTACu 407X) are above toxic levels revealing metal mobility; extraction capacity of metals followed the order of EDTA> NH4NO3>H2O; the mobility and bioavailability of the metalloids declines as Cd>>Zn>Cu>Pb>As.

Figure 1: (a) Location of the study area (b) main geological units and (c) wind rose of the prevailing winds. Main sources of contamination: tailings (A, C, D) with huge volumes and pond (B) with rejected muds and slush discharged from the ore process. 1) experimental area for phytotechnologies studies and 2) delimited Sunflower and Populus plots where soil was collected.